Forward Kinematics
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Forward Kinematics

» given the joint variables and dimensions of the links what is
the position and orientation of the end effector?




Forward Kinematics

» because the base frame and frame 1 have the same
orientation, we can sum the coordinates to find the position

of the end effector in the base frame (3, cos 6, +a, cos (6, + &),
a,sin 6, +a,sin (6, +6,))
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Forward Kinematics

» from earlier in the course

p°=(a, cos 6, +a, cos (6, + 6,), o
a, sin 0, +a,sin (6, + 6,)) Y2

X2= (cos (6, + ),
sin (6, + 6,))

Y9= (-sin (6, + 6),
cos (6, + 6,) )
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Frames




Forward Kinematics

» using transformation matrices
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Forward Kinematics

» attach a frame {1} to link I
all points on link I are constant when expressed in {i}

if joint 1 is actuated then frame {iI} moves relative to frame {i - 1}

motion is described by the rigid transformation
-1
T [
the state of joint I is a function of its joint variable g (i.e., is a function of ()
i1 i
Ti=T:{@)

» this makes it easy to find the last frame with respect to the
base frame

TO=TOTLTET]



Forward Kinematics

» more generally

T T, T i<

Ti= | if =]
i) if i>]

» the forward kinematics problem has been reduced to matrix
multiplication



Forward Kinematics

» Denavit | and Hartenberg RS,“A kinematic notation for lower-
pair mechanisms based on matrices.” Trans ASME J.Appl. Mech,
23:215-221, 1955

described a convention for standardizing the attachment of frames
on links of a serial linkage
» common convention for attaching reference frames on links of
a serial manipulator and computing the transformations
between frames
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Denavit—Hﬁrtenberg

Figure 3.2: Coordinate frames satistfying assumptions DH1 and DH2.



Denavit-Hartenberg

» notice the form of the rotation component

0 s C

ai ai

this does not look like it can represent arbitrary rotations

» can the DH convention actually describe every physically
possible link configuration?



Denavit-Hartenberg

» yes, but we must choose the orientation and position of the
frames in a certain way

(DHI) X L7,
(DH2) X intersectsZ ,

» claim:if DHI and DH2 are true then there exists unique
numbers

a,d,6,a such thatT,’ =R, , D,, D,, R,

X
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Denavit-Hartenberg




DH Parameters

» &, :link length

distance between z; ; and z; measured along X;
» & : link twist

angle between z; ; and z; measured about X;
» d; : link offset

distance between 0, ; to the intersection of X; and z; ; measured
along z,

» O :joint angle

angle between X; ; and X; measured about z; ,



Example with Frames Already Placed
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Figure 3.7: Three-link cylindrical manipulator.



Step 5: Find the DH parameters

ds
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Figure 3.7: Three-link cylindrical manipulator.
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Denavit-Hartenberg Forward Kinematics

» RPP cylindrical manipulator

http://strobotics.com/cylindrical-format-robot.htm
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Denavit-Hartenberg Forward Kinematics

d3 How do we place the frames?
B &)
() Y- - 3 : 23
. Yo -173'/l

Ys

Figure 3.7: Three-link cylindrical manipulator.
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Step 1: Choose the z-axis for each frame

» recall the DH transformation matrix

Ti=R,TaTaRe
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Step 1: Choose the z-axis for each frame

A

» £, = axis of actuation for joint I+1

link 1 link i+1 link 1

link 1+1

joint i+1 joint i+1

N>
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Step 1: Choose the z-axis for each frame

f'ig

21

Warning: the picture is deceiving.VWe do not yet know the origin of the
frames; all we know at this point is that each z; points along a joint axis
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Step 2: Establish frame {0}

» place the origin 0, anywhere on Z,

often the choice of location is obvious

» choose X, and Yy, so that {0} is right-handed

often the choice of directions is obvious
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Step 2: Establish frame {0}

ds
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Step 3: Iteratively construct {1}, {2}, ... {n-1}

» using frame {I-1} construct frame {I}
DHI: X; is perpendicular to z; ,
DH2: X; intersects z;

» 3 cases to consider depending on the relationship between z;
and z,
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Step 3: Iteratively construct {1}, {2}, ... {n-1}

» Case |

Z; 1 and Z; are not coplanar (skew)

Zi—l
A ~
shor'g\est line between Zi (out of page)
_ i )
I a1 ............... / > X

Oi point of intersection

a; angle from z; ; to z; measured about X;
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Step 3: Iteratively construct {1}, {2}, ... {n-1}

» Case 2
Z; 1 and z; are parallel ( o, =0)
iy Z,
'}

Oi point of intersection

notice that this choice results in d; =0
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Step 3: Iteratively construct {1}, {2}, ... {n-1}

» Case 3
Z, 1 and Z; intersect (&, =0)

Oi point of intersection

(out of page) 2i
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Step 3: Iteratively construct {1}, {2}, ... {n-1}

ds
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Step 3:

33

[teratively construct {1}, {2}, ... {n-1}

ds




Step 4: Place the end effector frame

Un = S

‘sliding”

Zn — A

“approach”

Figure 3.5: Tool frame assignment.
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Step 4: Place the end effector frame

ds
g ————— -
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Figure 3.7: Three-link cylindrical manipulator.
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Step 5: Find the DH parameters

» &, :distance between z; ; and z; measured along X;
» ¢ :angle between z; ; and Z; measured about X;

» d, : distance between 0; ; to the intersection of X; and z; ,
measured along z; ,

» 0 :angle between X; ; and X; measured about 7,
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Step 5: Find the DH parameters
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Figure 3.7: Three-link cylindrical manipulator.
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More Denavit-Hartenberg .

xamples
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Step 5: Find the DH parameters
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3 0 0 d;* 0
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Figure 3.7: Three-link cylindrical manipulator.
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Step 6: Compute the transformation

» once the DH parameters are known, it is easy to construct
the overall transformation

40

Link a, a i 6,
1 0 0 d, 0*
2 0 -90 d,* 0
3 0 0 d,* 0

* joint variable
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Step 6: Compute the transformation

Link a, a d. o
1 0 0 d, 6,*
2 0 -90 d,* 0
3 0 0 dy* 0

* joint variable

1 0 0 0

TR T R 0 01 0
2zd2xa2 a2_

. 0 -1 0 d,

0 0 0 1
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Step 6: Compute the transformation

Link a, o d. o
1 0 0 d, 6,*
2 0 -90 d,* 0
3 0 0 dy* 0

%

T R293 z,d, xa3R><a3_
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Step 6: Compute the transformation
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Spherical Wrist

Wrist Center Point

Yaw

q Pitch

Figure 1.6: The spherical wrist. The axes of rotation of the spherical wrist

are typically denoted roll, pitch, and yaw and intersect at a point called the
wrist center point.
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Spherical Wrist
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Spherical Wrist: Step 1

r56,

Jo
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Spherical Wrist: Step 2
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Spherical Wrist: Step 2
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Spherical Wrist: Step 4
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Step 5: DH Parameters
Z3 Xx R X6

6}6
x“__:fﬁ?S it C 1 i

7” - Z6
Z
4 Link a; o d, o
C) 94 4 0 90 0 0,*
5 0 90 0 Os*
8 7 I B A

* joint variable
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Step 6: Compute the transformation
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RPP + Spherical Wrist

apx

™~

Figure 3.9: Cylindrical robot with spherical wrist.
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RPP + Spherical Wrist
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Stanford Manipulator + Spherical Wrist

ds
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Link a; a d; o
1 0 90 0 0,*
2 0 90 d, 0,*
3 0 0 dy* 0
4 0 90 0 0,*
5 0 90 0 o,
6 0 0 d, 0,

* joint variable




SCARA + 1DOF Wrist
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